Kamis, 26 September 2013

Mesin turbofan

Mesin turbofan ada tipe mesin jet pesawat terbang yang mirip dengan mesin turbojet. Mesin ini umumnya terdiri dari sebuah kipas internal dengan sebuah turbojet kecil yang terpasang dibelakangnya untuk menggerakkan kipas tersebut. Aliran udara yang masuk melalui kipas ini melewati turbojet, dimana sebagian kecil udara itu dibakar untuk menghidupi kipas, dan sisa udara digunakan untuk menghasilkan dorongan.
Semua mesin jet yang digunakan untuk pesawat jet komersial masa kini adalah mesin turbofan. Mesin ini lebih banyak digunakan karena sangat efesien dan relatif menghasilkan suara yang lebih kecil.
Turbofan merupakan salah satu jenis dari jet engine. Kita tahu jet engine terbagi atas 3 jenis : turbojet,turboprop dan turbofan. Keistimewaan dari turbofan adalah jenis ini merupakan penyempurnaan dari turbojet dan turboprop. Kelemahan dari turbojet adalah boros bahan bakar,walau dalam soal tenaga lebih besar dibandingkan dengan jenis lain. Karena itu jenis ini cocok untuk dipakai pada pesawat tempur. Untuk turboprop,jenis ini mempunyai kelemahan yaitu tidak mampu mensupport high speed dan high altitude,hanya mencapai 25.000feet saja. Dan turbofan ini lah yang bisa menjawab semua requirment dari airlines yaitu: irit bahan bakar,mempunyai tenaga dorong yang besar.
Prinsip kerja turbofan adalah airflow(udara) masuk kedalam blade (low pressure compresor) atau kita sebut LPC dan dikompres kembali oleh blade yang lebih kecil ukurannya (high pressure compresor) atau kita sebut HPC,masuk ke ruang pembakaran (combustion chamber) dan diberi ignition sampai suhu atau temperatur tinggi baru lah disemprot oleh fuel. Karena terjadi pembakaran maka berubahlah energi kimia menjadi energi dorong. Energi dorong yang dihasilkan ini mendorong high pressure turbin (HPT) yang terhubung langsung dengan HPC sehingga HPC dapat berputar kembali. Energi dorong tersebut juga mendorong low pressure turbin (LPT) yang terhubung langsung dengan LPC. Dan sisa nya merupakan tenaga dorong pesawat. Jadi prinsip kerja turbofan dapat disederhanakan sebagai berikut :
Berbeda dengan motor bakar yang mempunyai 4step (langkah) atau 2step (langkah) pembakaran. Turbofan melakukan beberapa step TAPI dalam 1 WAKTU. Dan perbedaan dengan motor bakar adalah jika dalam motor bakar ruang pembakaran (combustion chamber) sudah di isi oleh campuran (mix) air dan fuel BARU diberi ignition (pengapian) sehingga terjadi pembakaran. Kalau di Turbofan ini,combustion chamber hanya di isi udara bertekanan tinggi saja. Karena tekanan tinggi maka temperatur tinggi dan diberi ignition,BARU di semprotkan fuel sehingga terjadi pembakaran.
Untuk gaya dorong (thrust) pesawat yang dihasilkan oleh pembakaran,sebenarnya hanya 15%-25% saja. Gaya dorong pesawat yang terbesar justru pada KIPAS (blade) atau LPC sebesar 75-85% yang digerak oleh LPT (seperti dijelaskan diatas). Karena itu Fan/blade/LPT dibungkus oleh casting,sehingga aliran udara (airflow) lebih terpusat mengalir kebelakang. Itulah alasan mengapa Turbofan lebih hemat bahan bakar dibanding dengan jenis lainnya. Dan pada saat engine berada kondisi HIGH SPEED,turbofan HANYA membutuhkan sedikit penambahan throttle untuk dapat menghasilkan thrust yang besar.
Mesin Turbofan adalah mesin yang umum dari turunan mesin-mesin turbin gas untuk menggerakkan pesawat terbang baik komersial maupun pesawat tempur. Mesin ini sebenarnya adalah sebuah mesin by-pass dimana sebagian dari udara dipadatkan dan disalurkan ke ruang pembakaran, sementara sisanya dengan kepadatan rendah disalurkan sekeliling bagian luar ruang pembakaran. Sekaligus udara tersebut berfungsi untuk mendinginkan suhu ruang pembakaran.
Udara yang di by-pass ini ada yang dicampur dengan udara panas pembakaran pada turbin bagian belakang seperti pada mesin Rolls-Royce Spey yang digunakan pada pesawat Fokker F-28. Ada pula yang disalurkan dengan pipa-pipa halus ke atmosfer. Mesin yang menggunakan type ini contohnya adalah mesin RB211 yang digunakan pada pesawat Boeing B 747 dan GE CF6-80C2 yang digunakan pada pesawat DC-10 serta P &W JT 9D.
Beberapa mesin yang menggunakan jenis mesin turbofan adalah Rolls-Royce Tay pada pesawat Fokker F-100 (yang dijuluki mesin fanjet), mesin Adour Mk871 yang digunakan pada pesawat tempur type Hawk Mk 100 dan Hawk Mk 200, pesawat tempur Jaguar dan Mitsubishi F-1 yang digunakan AU Jepang.
Kemudian mesin high by-pass turbofan yang diterapkan pada mesin CFM56-5C2 yang dipakai oleh pesawat Airbus A340 dan mesin CFM56-3 yang dipakai pada Boeing B-737 serie 300, 400 dan 500 yang merupakan produk bersama antara GE dengan SNECMA dari Perancis.
Pada pesawat militer, mesin turbofan yang diterapkan antara lain adalah mesin TF39-1C yang dipakai pada pesawat angkut raksasa C-5 Galaxy, kemudian GE F110 yang dipakai pada F-16, GE F118 yang bertype non-augmented turbofan yang diterapkan pada pesawat pembom stealth Northrop-Grumman B-2 dan pembom B-1 dengan mesin non augmented turbofan GE F101.

Rabu, 15 Februari 2012

Mesin Diesel

Mesin diesel adalah sejenis mesin pembakaran dalam; lebih spesifik lagi, sebuah mesin pemicu kompresi, dimana bahan bakar dinyalakan oleh suhu tinggi gas yang dikompresi, dan bukan oleh alat berenergi lain (seperti busi).
Mesin ini ditemukan pada tahun 1892 oleh Rudolf Diesel, yang menerima paten pada 23 Februari 1893. Diesel menginginkan sebuah mesin untuk dapat digunakan dengan berbagai macam bahan bakar termasuk debu batu bara. Dia mempertunjukkannya pada Exposition Universelle (Pameran Dunia) tahun 1900 dengan menggunakan minyak kacang (lihat biodiesel). Kemudian diperbaiki dan disempurnakan oleh Charles F. Kettering.

Bagaimana mesin diesel bekerja
  • Turbocharger atau supercharger untuk memperbanyak volume udara yang masuk ruang bakar karena udara yang masuk ruang bakar didorong oleh turbin pada turbo/supercharger.
  • Intercooler untuk mendinginkan udara yang akan masuk ruang bakar. Udara yang panas volumenya akan mengembang begitu juga sebaliknya, maka dengan didinginkan bertujuan supaya udara yang menempati ruang bakar bisa lebih banyak.

Ketika udara dikompresi suhunya akan meningkat (seperti dinyatakan oleh Hukum Charles), mesin diesel menggunakan sifat ini untuk proses pembakaran. Udara disedot ke dalam ruang bakar mesin diesel dan dikompresi oleh piston yang merapat, jauh lebih tinggi dari rasio kompresi dari mesin bensin. Beberapa saat sebelum piston pada posisi Titik Mati Atas (TMA) atau BTDC (Before Top Dead Center), bahan bakar diesel disuntikkan ke ruang bakar dalam tekanan tinggi melalui nozzle supaya bercampur dengan udara panas yang bertekanan tinggi. Hasil pencampuran ini menyala dan membakar dengan cepat. Penyemprotan bahan bakar ke ruang bakar mulai dilakukan saat piston mendekati (sangat dekat) TMA untuk menghindari detonasi. Penyemprotan bahan bakar yang langsung ke ruang bakar di atas piston dinamakan injeksi langsung (direct injection) sedangkan penyemprotan bahan bakar kedalam ruang khusus yang berhubungan langsung dengan ruang bakar utama dimana piston berada dinamakan injeksi tidak langsung (indirect injection).
Ledakan tertutup ini menyebabkan gas dalam ruang pembakaran mengembang dengan cepat, mendorong piston ke bawah dan menghasilkan tenaga linear. Batang penghubung (connecting rod) menyalurkan gerakan ini ke crankshaft dan oleh crankshaft tenaga linear tadi diubah menjadi tenaga putar. Tenaga putar pada ujung poros crankshaft dimanfaatkan untuk berbagai keperluan.
Untuk meningkatkan kemampuan mesin diesel, umumnya ditambahkan komponen :
Mesin diesel sulit untuk hidup pada saat mesin dalam kondisi dingin. Beberapa mesin menggunakan pemanas elektronik kecil yang disebut busi menyala (spark/glow plug) di dalam silinder untuk memanaskan ruang bakar sebelum penyalaan mesin. Lainnya menggunakan pemanas "resistive grid" dalam "intake manifold" untuk menghangatkan udara masuk sampai mesin mencapai suhu operasi. Setelah mesin beroperasi pembakaran bahan bakar dalam silinder dengan efektif memanaskan mesin.
Dalam cuaca yang sangat dingin, bahan bakar diesel mengental dan meningkatkan viscositas dan membentuk kristal lilin atau gel. Ini dapat memengaruhi sistem bahan bakar dari tanki sampai nozzle, membuat penyalaan mesin dalam cuaca dingin menjadi sulit. Cara umum yang dipakai adalah untuk memanaskan penyaring bahan bakar dan jalur bahan bakar secara elektronik.
Untuk aplikasi generator listrik, komponen penting dari mesin diesel adalah governor, yang mengontrol suplai bahan bakar agar putaran mesin selalu pada putaran yang diinginkan. Apabila putaran mesin turun terlalu banyak kualitas listrik yang dikeluarkan akan menurun sehingga peralatan listrik tidak dapat bekerja sebagaimana mestinya, sedangkan apabila putaran mesin terlalu tinggi maka dapat mengakibatkan over voltage yang bisa merusak peralatan listrik. Mesin diesel modern menggunakan pengontrolan elektronik canggih untuk mencapai tujuan ini melalui modul kontrol elektronik (ECM) atau unit kontrol elektronik (ECU) - yang merupakan "komputer" dalam mesin. ECM/ECU menerima sinyal kecepatan mesin melalui sensor dan menggunakan algoritma dan mencari tabel kalibrasi yang disimpan dalam ECM/ECU, dia mengontrol jumlah bahan bakar dan waktu melalui aktuator elektronik atau hidraulik untuk mengatur kecepatan mesin.

Tipe mesin diesel

Ada dua kelas mesin diesel: dua-tak dan empat-tak.
Biasanya jumlah silinder dalam kelipatan dua, meskipun berapapun jumlah silinder dapat digunakan selama poros engkol dapat diseimbangkan untuk mencegah getaran yang berlebihan. Mesin 6 segaris paling banyak diproduksi dalam mesin tugas-medium ke tugas-berat, meskipun V8 dan 4 segaris juga banyak diproduksi.
Mesin diesel bekerja dengan kompresi udara yang cukup tinggi, sehingga pada mesin disel besar perlu ditambahkan sejumlah udara yang lebih banyak. Maka digunakan Supercharger atau turbocharger pada intake manifold, dengan tujuan memenuhi kebutuhan udara kompresi

Keunggulan dan kelemahan dibanding dengan mesin busi-nyala

Untuk keluaran tenaga yang sama, ukuran mesin diesel lebih besar daripada mesin bensin karena konstruksi besar diperlukan supaya dapat bertahan dalam tekanan tinggi untuk pembakaran atau penyalaan. Dengan konstruksi yang besar tersebut penggemar modifikasi relatif mudah dan murah untuk meningkatkan tenaga dengan penambahan turbocharger tanpa terlalu memikirkan ketahanan komponen terhadap takanan yang tinggi. Mesin bensin perlu perhitungan yang lebih cermat untuk modifikasi peningkatan tenaga karena pada umumnya komponen di dalamnya tidak mampu menahan tekanan tinggi, dan menjadikan mesin diesel kandidat untuk modifikasi mesin dengan biaya murah.
Penambahan turbocharger atau supercharger ke mesin bertujuan meningkatkan jumlah udara yang masuk dalam ruang bakar dengan demikian pada saat kompresi akan menghasilkan tekanan yang tinggi dan pada saat penyalaan atau pembakaran akan menghasilkan tenaga yang besar. Penambahan turbocharger atau supercharger pada mesin diesel tidak berpengaruh besar terhadap pemakaian bahan bakar karena bahan bakar disuntikan secara langsung ke ruang bakar pada saat ruang bakar dalam keadaan kompresi tertinggi untuk memicu penyalaan agar terjadi proses pembakaran. Sedangkan penambahan turbocharger atau supercharger pada mesin bensin sangat memengaruhi pemakaian bahan bakar karena udara dan bahan bakar dicampur dengan komposisi yang tepat sebelum masuk ruang bakar, baik untuk mesin bensin dengan sistem karburator maupun sistem injeksi.

 


 


Minggu, 12 Februari 2012

Mesin 4 Tak

Mesin empat tak adalah mesin pembakaran dalam yang dalam satu siklus pembakaran terjadi empat langkah piston. Sekarang ini, mesin pembakaran dalam pada mobil, sepeda motor, truk, pesawat terbang, kapal, alat berat dan sebagainya, umumnya menggunakan siklus empat langkah. Empat langkah tersebut meliputi, langkah hisap (pemasukan), kompresi, tenaga dan langkah buang yang secara keseluruhan memerlukan dua putaran poros engkol (crankshaft) per satu siklus pada mesin bensin atau mesin diesel.



Berkas:4-Stroke-Engine.gif

Prinsip kerja



Untuk memahami prinsip kerja, perlu dimengerti istilah baku yang berlaku dalam teknik otomotif :
  • TMA (titik mati atas) atau TDC (top dead centre), posisi piston berada pada titik paling atas dalam silinder mesin atau piston berada pada titik paling jauh dari poros engkol (crankshaft).
  • TMB (titik mati bawah) atau BDC (bottom dead centre), posisi piston berada pada titik paling bawah dalam silinder mesin atau piston berada pada titik paling dekat dengan poros engkol (crankshaft).

Sabtu, 04 Februari 2012

Mesin 2 Tak



Mesin dua tak adalah mesin pembakaran dalam yang dalam satu siklus pembakaran terjadi dua langkah piston, berbeda dengan putaran empat-tak yang mempunyai empat langkah piston dalam satu siklus pembakaran, meskipun keempat proses (intake, kompresi, tenaga, pembuangan) juga terjadi.
Mesin dua tak juga telah digunakan dalam mesin diesel, terutama rancangan piston berlawanan, kendaraan kecepatan rendah seperti mesin kapal besar, dan mesin V8 untuk truk dan kendaraan berat lainnya.
Berkas:Arbeitsweise Zweitakt.gif
         CARA KERJA MESIN 2 TAK

Ø Prinsip Kerja
Untuk memahami prinsip kerja, perlu dimengerti istilah baku yang berlaku dalam teknik otomotif :
§  TMA (titik mati atas) atau TDC (top dead centre), posisi piston berada pada titik paling atas dalam silinder mesin atau piston berada pada titik paling jauh dari poros engkol (crankshaft).
§  TMB (titik mati bawah) atau BDC (bottom dead centre), posisi piston berada pada titik paling bawah dalam silinder mesin atau piston berada pada titik paling dekat dengan poros engkol (crankshaft).
§  Ruang bilas yaitu ruangan dibawah piston dimana terdapat poros engkol (crankshaft), sering disebut dengan bak engkol (crankcase) berfungsi gas hasil campuran udara, bahan bakar dan pelumas bisa tercampur lebih merata.
§  Pembilasan (scavenging) yaitu proses pengeluaran gas hasil pembakaran dan proses pemasukan gas untuk pembakaran dalam ruang bakar.

Jumat, 03 Februari 2012

Mesin Jet/Jet Engine


Mesin jet/Jet Engine adalah sebuah jenis mesin pembakaran dalam menghirup udara yang sering digunakan dalam pesawat. Prinsip seluruh mesin jet pada dasarnya sama; mereka mempercepat massa (udara dan hasil pembakaran) ke satu arah dan dari hukum gerak Newton ketiga mesin akan mengalami dorongan ke arah yang berlawanan. Yang termasuk mesin jet antara lain turbojet, turbofan, rocket, ramjet, dan pump-jet.
Mesin ini menghirup udara dari depan dan mengkompresinya. Udara digabungkan dengan bahan bakar, dan dibakar. Pembakaran menambah banyak peningkatan energi dari gas yang kemudian dibuang ke belakang mesin. Proses ini mirip dengan siklus empat-gerak, dengan induksi, kompresi, penyalaan, dan pembuangan terjadi secara berkelanjutan. Mesin menghasilkan dorongan karena percepatan udara yang melaluinya; gaya yang sama dan berlawanan yang dihasilkan adalah dorongan bagi mesin.
Mesin jet mengambil massa udara yang relatif sedikit dan mempercepatnya dengan jumlah yang besar, di mana sebuah pendorong mengambil massa udara secara besar dan mempercepatnya dalam jumlah kecil. Pembuangan kecepatan tinggi dari mesin jet membuatnya efisien pada kecepatan tinggi (terutama kecepatan supersonik) dan ketinggian tinggi. Pada pesawat pelan dan yang membutuhkan jarak terbang pendek, pendorong yang menggunakan turbin gas, yang umumnya dikenal sebagai turboprop, lebih umum dan lebih efisien. Pesawat sangat kecil biasanya menggunakan mesin piston untuk menjalankan pendorong tetap turboprop kecil semakin lama semakin kecil dengan berkembangnya teknologi teknik.
Efisiensi pembakaran sebuah mesin jet, seperti mesin pembakaran dalam lainnya, dipengaruhi besar oleh rasio volume udara yang dikompresi dengan volume pembuangan. Dalam mesin turbin kompresi udara dan bentuk "duct" yang melewati ruang pembakaran mencegah aliran balik dari situ dan membuat pembakaran berkelanjutan dimungkinkan dan proses pendorongan.
Mesin turbojet modern modular dalam konsep dan rancangan. Inti penghasilan-tenaga utama, sama dalam seluruh mesin jet, disebut sebagaigenerator gas. Dan juga modul tambahan lainnya seperti gearset pengurang dorongan (turboprop/turboshaft), kipas lewat, dan "afterburner". Jenis alat tambahan dipasang berdasarkan penggunaan pesawat.